Sample Paper 6: Paper 2

Question 7 (50 marks)

Question 7 (a)

Percentage success	Frequency f	Mid-interval Value x	$f x$
$70-74$	6	72	432
$74-78$	18	76	1368
$78-82$	38	80	3040
$82-86$	18	84	1512
$86-90$	18	88	1584
$90-94$	2	92	184
	100		8120

$\mu=\frac{\sum f x}{\sum f}=\frac{8120}{100}=81.2 \Rightarrow$ Mean percentage success rate $=81.2 \%$
Question 7 (b)

Percentage success	Cumulative frequency
<74	6
<78	24
<82	62
<86	80
<90	98
<94	100

$6 \times 1+18 \times 1+38 x=38(1-x)+18 \times 1+18 \times 1+2 \times 1$
$24+38 x=38-38 x+38$
$76 x=52$
$x=\frac{52}{76}=\frac{13}{19}$
\therefore Median $=77.5+\frac{13}{19} \times 4=80.2$
Question 7 (c)
(i) Mean $\mu=81.2$

Median $=80.2$
$\%$ difference $=\frac{81.2-80.2}{81.2} \times 100 \%=1.23 \%$
(ii) It is approximately normal because the mean is approximately equal to the median.
(iii) $\quad \sigma=4.75$

Question 7 (d)

(i) $\quad \mu=81.2, \sigma=4.75$

$$
\begin{aligned}
& P(z \leq Z)=0.9 \Rightarrow z=1.28 \\
& z=\frac{x-\mu}{\sigma} \Rightarrow 1.28=\frac{x-81.2}{4.75} \\
& \therefore x=87.3 \%
\end{aligned}
$$

(ii) $\quad \mu=81.2, \sigma=4.75$
$P(x<85)=$?
$x=85: z=\frac{x-\mu}{\sigma}=\frac{85-81.2}{4.75}=0.8$
$P(z<0.8)=0.7881=78.8 \%$

Question 7 (e)

Conditions for a Bernoulli Trial:
Condition: There are only two possible outcomes (success or failure) in each trial.
Condition: There is a fixed number of trials n.
Condition: The probability of success p is fixed from trial to trial.
Condition: The trials are independent.
Condition: The binomial random variable is the number of successes in n trials.

Question 7 (f)

(i) $\quad P$ (Success) $=0.927$
$P($ Failure $)=0.073$
$P($ Scores all five $)={ }^{5} C_{5}(0.927)^{5}(0.073)^{0}=0.685=68.5 \%$
(ii) $\quad P($ Scores three out of five $)={ }^{5} C_{3}(0.927)^{3}(0.073)^{2}=0.042=4.2 \%$
(iii) He has two successes and two failures on the first four throws and he scores on the last. $P($ Scores two out of first four and scores last $)={ }^{4} C_{2}(0.927)^{2}(0.073)^{2}(0.927)=0.025=2.5 \%$

